The Supremum and Stability of Weighted Pseudoinverses

نویسنده

  • MUSHENG WEI
چکیده

During recent decades, there have been a great number of research articles studying interior-point methods for solving problems in mathematical programming and constrained optimization. Stewart and O'Leary obtained an upper bound for scaled pseudoinverses sup W2P k(W 1 2 X) + W 1 2 k 2 of a matrix X where P is a set of diagonal positive deenite matrices. We improved their results to obtain the supremum of scaled pseudoinverses and derived the stability property of scaled pseudoinverses. Forsgren further generalized these results to derive the supremum of weighted pseudoinverses sup W2P k(W 1 2 X) + W 1 2 k 2 where P is a set of diagonally dominant positive semideenite matrices, by using a signature decomposition of weighting matrices W and by applying the Binet-Cauchy formula and Cramer's rule for determinants. The results are also extended to equality constrained linear least squares problems. In this paper we extend Forsgren's results to a general complex matrix X to establish several equivalent formulae for sup W2P k(W 1 2 X) + W 1 2 k 2 , where P is a set of diagonally dominant positive semideenite matrices, or a set of weighting matrices arising from solving equality constrained least squares problems. We also discuss the stability property of these weighted pseudoinverses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent formulae for the supremum and stability of weighted pseudoinverses

During recent decades, there have been a great number of research articles studying interior-point methods for solving problems in mathematical programming and constrained optimization. Stewart and O’Leary obtained an upper bound for scaled pseudoinverses sup W∈P ‖(W 12X)+W 2 ‖2 of a matrix X where P is a set of diagonal positive definite matrices. We improved their results to obtain the suprem...

متن کامل

An equivalent representation for weighted supremum norm on the upper half-plane

In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997